Scramble String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 =
"great"
:great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node
"gr"
and swap its two children, it produces a scrambled string "rgeat"
.rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that
"rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes
"eat"
and "at"
, it produces a scrambled string "rgtae"
.rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that
"rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
------------------------------------- thinking ------------------------------------
------------------------------------- recursive codes -----------------------------
class Solution {
public:
bool isScramble(string s1, string s2) {
return scrambleHelper(s1, 0, s1.size() - 1, s2, 0, s2.size() - 1);
}
bool scrambleHelper(string s1, int start1, int end1, string s2, int start2, int end2) {
if (end1 - start1 != end2 - start2) {
return false;
}
if (end1 == start1 && s1[end1] == s2[end2]) {
return true;
}
//important part here, don't miss it
//or it will cause ETL
int cnt[256] = {0};
for (int ind=start1; ind <= end1; ind++) {
cnt[s1[ind]]++;
}
for (int ind=start2; ind <= end2; ind++) {
cnt[s2[ind]]--;
}
for (int ind=0; ind < 256; ind++) {
if (cnt[ind] != 0) {
return false;
}
}
for (int i = start1; i < end1; i++) {
if (scrambleHelper(s1, start1, i, s2, start2, i - start1 + start2) &&
scrambleHelper(s1, i+1, end1, s2, i - start1 + start2 + 1, end2)) {
return true;
}
if (scrambleHelper(s1, start1, i, s2, start1 - i + end2, end2) &&
scrambleHelper(s1, i+1, end1, s2, start2, end1 - i - 1 + start2)) {
return true;
}
}
return false;
}
};
No comments:
Post a Comment